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Subsonic Wing Rock of Slender Delta Wings

P. Konstadinopoulos,* D. T. Mook, and A. H. Nayfehi
Virginia Polytechnic Institute and State University, Blacksburg, Virginia

Two recent experimental studies investigated the self-excited motion of a flat delta wing that was free to roll
about an axis parallel to its midspan chord. In this paper these experiments are simulated numerically. An
unsteady vortex-lattice method is used to provide the aerodynamic loads and the equation of motion is in-
tegrated by a prediction-correction scheme. The solution provides complete histories of the motion of the wing
and the flowfield simultaneously, fully accounting for dynamic-aerodynamic interaction. The present simulation
predicts that the symmetric configuration of the leading-edge vortex system becomes unstable as the angle of at-
tack increases. Sequential views of the computed, time-dependent shape of the leading-edge system show how
this causes a loss of roll damping at small angles of roll. Consequently, at sufficiently high incidence, small
disturbances introduced into the flowfield grow, causing wing rock to develop. For angles of attack at onset and
the amplitudes and periods of the ensuing limit cycles, the numerical predictions and experimental observations
are in agreement. The simulation shows the influence of the experimental parameters and provides an explana-

tion for the differences in the observations.

Nomenclature
a =amplitude of limit cycle
c =wing chord ‘
C, =rolling moment coefficien
C,, =pitching moment coefficient
C, =normal force coefficient
C,; =dimensionless coefficient defined in Eq. (3a)
C, =dimensionless damping coefficient defined in Eq. (3b)
d = distance of axis of rotation below midspan chord
I =moment of inertia of wing and moving parts of sting

about axis of rotation

=reduced frequency ,

= characteristic length, chord of rectangular elements in
bound portion of vortex sheet

=area of planform

=time

=period of limit cycle

~ =freestream speed

=angle of attack

= damping coefficient for bearings in sting

= air density

=roll angle

=dimensionless time defined in Eq. (3¢)

TeTTRQNTY A

Introduction

N parts of their flight envelopes, some highly swept delta

wings operate at subsonic speeds and high angles of attack.
The maximum angle of attack is often restricted by the onset
of wing rock (a mainly rolling motion) instead of the occur-
rence of stall. Nguyen et al.! conducted an experimental study
using a flat delta wing with 80-deg leading-edge sweep. The
model was subjected to static, forced-oscillation, and free-to-
roll tests. In the free-to-roll tests, the model was supported on
a sting consisting of two concentric barrels separated by ball
bearing assemblies and placed in a low-subsonic, steady
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stream in a large wind tunnel. The angle of attack was varied.
The critical angle of attack at the onset of wing rock was noted
and the amplitudes and periods of the ensuing limit cycles
were measured. Subsequently, Levin and Katz? conducted a
similar experiment.

There are some important differences in the two ex-
periments. Nguyen et al. supported their model in such a way
that the axis of rotation was 2 in. below the midspan chord;
Levin and Katz had their axis of rotation on the midspan
chord. As a result, the sideslip was different. Moreover, the
size of the models, the speed of the airstream, and most likely
the friction in the bearings were different. As the present
results show, these are important differences.

In order to make the axis of rotation coincide with the
midspan chord, Levin and Katz housed the bearing assembly
inside a rather large hump or bulge along the centerline of the
wing. Nguyen et al. had their bearing assembly well aft and
below the wing. These differences have been the source of
some controversy and speculation. Unfortunately, the present
numerical simulation does not provide any information or in-
sight on the matter.

At very large angles of attack, the leading-edge vortex
systems become unstable and a phenomenon known as vortex
bursting, or vortex breakdown, occurs. The discrete-vortex
model apparently does not imitate the physics of the flow very
well after bursting occurs. But the 80-deg-sweep delta wings
used in the experiments experience wing rock well before
bursting occurs.

The present simulation does show that the symmetric con-
figuration of the leading-edge vortex system is unstable above
a critical angle of attack. This causes a loss of roll damping at
small angles of roll. Consequently, small disturbances in-
troduced into the flowfield grow, causing wing rock to
develop.

There are many discussions of wing rock in the literature.
Several additional citations are contained in Refs. 1 and 2 as
well as in a recent paper by Ericsson.®> A comprehensive
discussion can be found in the thesis by Konstadinopoulos.*

Numerical Model
The wing being considered is represented schematically in
Fig. 1. This wing has one degree of freedom. The dynamical
system includes the wing (a flat uniform plate) and the parts of
the sting that rotate with it. When d#0 the schematic drawing
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resembles the wing of Nguyen et al.! and when d=0 it
resembles the wing of Levin and Katz.?
The equation of motion has the form

1= (Y2pcSUL)YCy( ,030,d) — 1)

In both experiments, the centers of mass lay on the axis of
rotation and hence there is no term in Eq. (1) for the static mo-
ment of the weight. Equation (1) can be expressed in dimen-
sionless form as

6" (1)=C,Cy(¢,0";0,d/L) = C;¢’ @
where
C,=pcSL?/81 (3a)
C,=pL/2U I (3b)
7=2U,t/L (3¢0)

The coefficient C, is computed by the unsteady vortex-
lattice method (UVLM) developed by Konstadinopoulos et
al.’ Using this method, one considers the wing and the wake
adjoining its leading and trailing edges to be a sheet of vortici-
ty. The portion of the sheet representing the wing is called
bound, while that representing the wake is called free. Starting
from known initial conditions, which must include a complete
description of the wake (vorticity distribution and position) as
well as the position and velocity of the lifting surface, one can
march forward in time when the motion of the wing is given,
calculating the generalized forces on the bound portion and
describing the wake at each step. The wake is placed in the
force-free position. The computations are simplified by ap-
proximating the entire vortex sheet with a lattice of discrete
vortex lines.

The innovation in the present paper is to couple the UVLM
with the equation of motion and to predict the motion and
flowfield simultaneously and interactively.

In the simulation the wing is always given an initial displace-
ment, held until a steady state develops and then released from
rest. Hence, the initial conditions for the lifting surface always
have the form

¢(0)=¢, and §(0)=0 “

After release the equation of motion is integrated numerically
using a prediction-correction method®; the UVLM is a
subroutine called to supply the aerodynamic loads.

Numerical Simulation of Wing Rock

In this section we consider two examples; they correspond
to the experiments of Nguyen et al.! (case A) and Levin and
Katz? (case B). The physical parameters of the two cases are
given in Table 1. In the experiments, no attempts were made to
measure the damping in the bearings of the stings. As a result,
several values of C, in Eq. (2) are used in the numerical
simulation to determine the effect of damping. The value of d
is also varied in the simulation.

Table 1 Experimental parameters

Case A Case B
Nguyen et al.! Levin and Katz?
c,m 1.765 0.429
L,m 0.442 0.107
S,m? 0.5491 0.0321
Lkg-m? 9.18x 1072 2.7x104
d,in. 2 0
o.kg/m? 1.187 1.2
U,,m/s 9.266 15
(o 0.31 0.088
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In both experiments, the wings were placed in a steady
stream and the angles of attack were increased until a rolling
motion developed spontaneously. In both numerical simula-
tions, the wings were given an initial displacement, held until a
steady state developed, and then released from rest. The ensu-
ing motion determines whether the wing is stable at that angle
of attack.

Case A

Typical results for a stable angle of attack are shown in Fig.
2. These results describe the motion for an initial displacement
of 5 deg when the angle of attack is 16 deg. In Fig. 2a, ¢ is
plotted as a function of ¢ (the phase plane); while in Fig. 2b,
the roll angle ¢ is plotted as a function of time. The motion
clearly decays and the phase plane resembles that of a stable
focus. The choice of C), is discussed below.

Typical results for an unstable angle of attack are shown in
Fig. 3. The results describe the motion for an initial displace-
ment of 5 deg when the angle of attack is 27 deg. The same C,
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Fig. 1 Schematic of the delta wing.
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Fig. 2 Response to an initial disturbance at a stable angle of attack
(=15 deg), case A.
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Fig. 3 Response to an initial disturbance at an unstable angle of at-
tack (a=27 deg), case A.

Table 2 Effect of distance d on limit cycle
for 27-deg angle of attack for case A

d, in. 0 2 4
a, deg 41 35 28
T,s 1.57 1.4 1.31
k 0.13 0.15 0.16

is used in Figs. 2 and 3. These numerical results closely resem-
ble the observations of Nguyen et al.! Although the angles of
attack are different in Figs. 2 and 3, the periods of the motion
are nearly the same.

Nguyen et al. found the amplitude and period of the motion
to be 34 deg and 0.98 s. Experimenting with different choices
for C,, we found 35 deg and 1.2 s when C, =0.01. Moreover,
this value of C, leads to good agreement with both the observ-
ed amplitude and period for all cases measured by Nguyen et
al. More is said about C, below.

The period of the rolling moment is the same as that of the
motion, but the period of the normal force and pitching mo-
ment is exactly half the period of the motion, as one would ex-
pect. The mean values of the pitching moment and normal
force drop as the limit cycle develops.

The intersection of the envelope of the leading-edge vortex
systems with a Trefftz plane just before the trailing edge is
shown in Fig. 4 at various positions through half of the limit
cycle. The small circles represent the streamwise, discrete-
vortex lines. Also shown is the view down the perpendicular to
the wing. Comparisons with wind tunnel data for steady flows
showed that six streamwise vortex lines in each leading-edge
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Fig. 4 Wake envelopes viewed in a Trefftz plane near the trailing
edge and along the perpendicular to the wing.

system provided accurate predictions for the normal force,
pitching moment, and rolling moment. The results for steady
flow are shown in Fig. 4a.

Using Fig. 4, one can arrive at the following description of
the wing-rock phenomenon. At small angles of roll, the mo-
tion causes the vortex system adjoining the upward-moving
side to compress and the vortex system adjoining the
downward-moving side to stretch. The spanwise positions of
their cores remain nearly the same (Fig. 4b). As a result, the
vorticity induces a larger velocity on the upward-moving side,
generating a rolling moment in the direction of the rotation—a
destabilizing moment. As the roll angle increases, the relative
direction of the incoming stream changes, blowing the com-
pressed vortex system outboard and the stretched system in-
board (Figs. 4c and 4d). As the vortex system moves outboard,
the tangential component of the velocity that it induces on the
wing decreases and the normal component increases. The lat-
ter is a downwash and reduces the effective angle of attack.
Eventually, the moment becomes stabilizing, the rotation
stops, and the wing starts to rotate back toward its (unstable)
equilibrium position.

The top views show that the side of the vortex system being
compressed tends to collapse and become a little confused.
This can lead to small numerical aberrations and is probably
responsible for the small ‘‘teeth”’ in the rolling moment shown
in Fig. 3. The time step was reduced by a factor of one-half
twice. To two significant figures, the results were the same;
however, the aberrations are less for the small time steps.

Because the wing is rotating in different directions, the posi-
tions of the leading-edge vortex systems are different in Figs.
4c and 4e (¢ is 19 deg in both). As a result, the rolling
moments are different in the two cases and hence there is
hysteresis. In Fig. 5 the moment is plotted as a function of
position. The arrows indicate the motion of the representative
point as time increases. Hysteresis is clearly evident.

When the angle of attack is sufficiently small and wing rock
does not develop, the vortex systems adjoining the leading
edges lie closer to the surface of the wing than those
represented in Fig. 4. As a result, the motion forces the com-
pressed vortex above the upward-moving side more outboard
than the one represented in Fig. 4b, the induced velocity is
greater on the downward-moving side instead of the upward-
moving side, and the direction of the moment is opposite to
the direction of the motion. Consequently, there is damping,
the initial disturbances decay, and the wing is stable.
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The effect of the distance between the midspan chord and
the axis of rotation (d) on the amplitudes and periods of the
limit cycles is given in Table 2. C, is zero and « is 27 deg. As d
increases, both the amplitude and the period decrease.

Case B

Here we simulate the experiment of Levin and Katz? and
discuss some features of the wing-rock phenomenon and some
factors affecting the experiments.

Typical results for wing rock are shown in Fig. 6. The initial
angle of roll is 5 deg and the angle of attack 25 deg. The
calculated form of the rolling moment as a function of time
differs somewhat from that predicted in case A. Here d is zero
and hence the side slipping motion is less than that in case A.
As aresult, the discrete vortex lines in the wake do not become
quite so confused; consequently, there are smaller numerical
aberrations and virtually no “‘teeth’’ in the moment. Again,
the trend is for the mean values of pitching moment and nor-
mal force (not shown) to decrease as the limit cycle becomes
established.

Levin and Katz observed an amplitude of 33 deg and a
period of 0.4 s when « is 25 deg. Using C, =0.004, we predict
an-amplitude of 32 deg and a period of 0.39 s. Again, one
value of C, leads to close agreement for both the amplitude
and period.

The effect of the damping in the bearing is shown in Table
3. The amplitudes and periods of the limit cycles are given for
various values of C, when « is 25 deg. As C, increases, both
the amplitude and the period decrease. When C, is above
0.011 approximately, wing rock does not develop from a small
initial displacement at this angle of attack.

The initial displacement can affect the response. It appears
from numerical experimentation that at angles of attack
slightly below the threshold (¢=18 deg in the numerical
simulation), small initial displacements decay while large in-
itial displacements can lead to limit-cycle behavior. However,
near the critical value of the angle of attack, changes occur
very slowly in the numerical simulation and it is possible that
the numerical results are misinterpreted. Nevertheless, this
result is consistent with the findings of Levin and Katz.? They
observed that when o was approximately 18 deg wing rock did
not develop spontaneously, but could be produced (or main-
tained) by slowly decreasing « from a position where wing
rock had already developed.

Table 3 Effect of bearing friction on limit cycle for
d=0 and 25-deg angle of attack for case B

c, a, deg T,s k
0.003 35 0.40 0.45
0.004 32 0.39 0.46
0.005 30 0.38 0.48
0.006 28 0.36 0.49
0.007 25 0.35 0.51
0.008 23 0.34 0.52
0.009 21 0.33 0.53
0.010 19 0.33 0.54
0.011 16 0.32 0.56
0.012 0 - -
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When « is 25 deg, numerical experimentation shows that the
same limit cycle develops over a wide range of initial
displacements. But, for initial displacements above a certain
value, the motion does not become oscillatory; instead, the
wing rotates continuously in one direction. This phenomenon
is sometimes called roll divergence. In Fig. 7, the phase plane
represents the motions for the two initial conditions. When the
initial angle of roll is 45 deg, wing rock develops. The limit cy-
cle is exactly what develops when the initial angle is 5§ deg (the
scales are different in Figs. 6 and 7). When the initial angle is
60 deg, the wing rolls continuously in one direction and roll
divergence develops. These results suggest that between the
angles of 45 and 60 deg there exists an unstable limit cycle.

The same value of C, that leads to close predictions of the
amplitude and period when « is 25 deg also leads to a fairly
good prediction of the threshold «. However, near threshold
and for o of 30 deg and more, the predicted period and
amplitude are not in close agreement with the observations.
Near threshold this could be the result of the hump along the
midspan chord, which houses the bearing assembly and is not
taken into account by the present numerical model. For « of
30 deg and above, the disagreement is very likely the result of
vortex bursting, which creates a damping effect that the pres-
ent numerical model cannot imitate. At these high angles of
attack, the observed amplitudes and periods are lower than the
predictions; this is consistent with the addition of damping to
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Fig. 6 Response to an initial disturbance at an unstable angle of at-
tack (¢=25 deg), case B.

Table 4 Coefficients a; at various angles of attack for case B (C,=0.004)

(Coefficient «, deg)

10 15 20 25
a; —0.0047 -0.0128 —0.0351 —0.0572
a, —0.0143 0.0128 0.0847 0,1362
az —0.0217 —0.0482 —0.0089 0.0514
ay 0.2118 0.1646 —0.2555 ~1.4030
as 0.2599 —0.4407 0.5530 7.9430
ag 0.1539 0.1940 0.0588 0.0750
ay —3.7460 0.7672 -0.0605 1.4808
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the system and counter to the trend shown by the observations
at low angles of attack.

An analytical model of the aerodynamic moment can con-
tribute to understanding wing rock. Accordingly, we represent
the rolling moment with the following expansion in terms of
angle of roll ¢ and roll rate ¢:

Ci=a,0+a,¢+a;¢° +a,6%¢
+as$?p+asd’ +a,0° + agd’e +agp? ¢’

+a, ¢ +a,¢'d+a;,¢° &)
The coefficients a;, which are functions of the angle of attack,
are determined by a least-squares fit with the numerical
results. It turns out that not all of the terms are important:
some make virtually no contribution and their coefficients can
be set equal to zero. The remaining coefficients are given for
various angles of attack in Table 4. The apparent erratic
behavior of a;, a4, and @, suggests that the corresponding
terms are probabiy contributing only marginally.

It is possible to separate C, into restoring and damping com-
ponents, which are defined as follows:

Cr=a;0+a;¢’ +asd°¢+a,¢’° ©)

™

Referring to Table 4, we see that the coefficient of the prin-
cipal restoring term a; is always negative and decreases as « in-
creases. In contrast, the coefficient of the principal damping
term a, increases and changes sign as « increases. Thus, at
least at small angles of roll, the damping component changes
sign and becomes destabilizing. This loss of roll damping
causes wing rock to develop from small initial disturbances. In
the equations governing the motion, @, combines with C, and
the wing is unstable to small disturbances when the sum is
positive. It is interesting to note that the trend for a, is op-
posite the trend for a,.

More insight into the character of the total moment can be
gained from Figs. 8 and 9. In Figs. 8a and 8b, the restoring
component Cy and the angle of roll ¢ are plotted as functions
of time when the angle of attack is 10 and 15 deg, respectively.
Both are stable. In Figs. 8¢ and 8d, « is 20 and 25 deg, respec-
tively. Both are unstable. The component Cj is always out of
phase with ¢ and hence is always stabilizing. As the amplitude
of the roll moment increases, the nonlinear effects flatten the
moment curve, leaving small peaks just before and after the
maximum displacement.

In Figs. 9a and 9b, the total damping moment,
Cp—C,6=Cj, and ¢ are plotted as functions of time when «
is 10 and 15 deg, respectively. In Fig. 9b, the damping moment
shows some leveling near the zeros of ¢. This is an early mani-
festation of the loss of roll damping that develops as « in-
creases. In Figs. 9¢ and 9d, « is 20 and 25 deg. In these figures,

Cp=a,¢+a,*d+asd’
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the damping moment clearly has the same sign as the velocity
when the velocity is near its maximum (and ¢ is near zero) and
the opposite sign when the velocity is near zero (and ¢ is near
its maximum). Here, the loss of roll damping, which is respon-
sible for wing rock, is clearly evident.

The damping changes sign relative to the velocity during a
cycle, being destabilizing at small ¢ and stabilizing at large ¢.
These results suggest that there exists some similarity between
this wing and the van der Pol and Rayleigh oscillators (see,
e.g., Nayfeh and Mook”). However, the existence of a larger,
unstable limit cycle between 45 and 60 deg indicates that this
system is not as simple as the van der Pol and Rayleigh
oscillators.

Conclusions

A numerical simulation of the subsonic wing-rock of
slender delta wings has been presented. The dynamical equa-
tion governing the rolling motion of a flat delta wing about an
axis parallel to its midspan chord was coupled with the
unsteady vortex-lattice method. The result was integrated us-
ing a prediction-correction technique. The resulting solution
yields simultaneously complete histories of the rolling motion
of the wing and the flowfield, fully accounting for dynamic-
aerodynamic interaction. For small angles of attack, the
simulation shows that wing rock does not develop and any
disturbance given to the wing decays. When the angle of at-
tack exceeds a critical value, the present simulation predicts
that the symmetric configuration of the leading-edge vortex
systems becomes unstable. Sequential views of the computed,
time-dependent shape of the leading-edge wake show how this
causes a loss of damping at small angles of roll. As a result,
small disturbances grow and the wing achieves a periodic limit
cycle. Moderately large disturbances decay to the same limit
cycle, in qualitative agreement with experimental observa-
tions. However, for large disturbances, the motion does not
achieve a limit cycle. Instead, the wing rolls continuously in
one direction, that is, roll divergence develops. It should be
noted that, although the vortex-lattice method is not limited
by wing planform, camber or twist, it is limited to angles of at-
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tack for which vortex bursting does not occur and to situations
in which separation occurs only along the edges.

For quantitative comparison with the recent experimental
results of Nguyen, Yip, and Chambers' and Levin and Katz?
for free-to-roll tests of slender delta wings supported on
stings, a damping term that simulates the friction in the bear-
ings of the stings is added to the equation of motion. The
simulation shows that the angle of attack at which wing rock
develops and the amplitude and period of the ensuing limit cy-
cle are strongly dependent on the magnitude of the damping
coefficient in the bearings of the sting and on the location of
the axis of rotation. For a given facility, a single value for the
damping coefficient can be chosen such that the predicted
amplitude and period are in close agreement with the observed
amplitude and period.
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